
1

Optimization by Bayesian adaptive locally linear

stochastic descent

Cli� C. Kerr
1,2,3,4

*, Tomasz G. Smolinski
5
, Salvador Dura-Bernal

4
, David P. Wilson

1

1
Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, NSW, Australia

2
Complex Systems Group, School of Physics, University of Sydney, Sydney, NSW, Australia

3
Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia

4
Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA

5
Department of Computer and Information Sciences, Delaware State University, Dover, DE

Abstract

When standard optimization methods fail to �nd a satisfactory solution for a parameter �tting problem, a tempting recourse

is to adjust parameters manually. While tedious, this approach can be surprisingly powerful in terms of achieving optimal or

near-optimal solutions. This paper outlines an optimization algorithm, Bayesian Adaptive Locally Linear Stochastic Descent

(BALLSD), that has been designed to replicate the essential aspects of manual parameter �tting in an automated way. Speci�cally,

BALLSD uses simple Bayesian principles to form probabilistic assumptions about (a) which parameters have the greatest e�ect

on the objective function, and (b) optimal step sizes for each parameter. We show that for a certain class of optimization

problems (namely, those with a moderate to large number of scalar parameter dimensions, especially if some dimensions are

more important than others), BALLSD is capable of minimizing the objective function with far fewer function evaluations than

classic optimization methods, such as the Nelder-Mead nonlinear simplex, Levenberg-Marquardt gradient descent, simulated

annealing, and genetic algorithms.

1 Introduction

Consider a human H who is attempting to minimize a nonlinear objective function, E = f(x), by manually adjusting

parameters in the vector x. H typically begins with a uniform prior regarding which parameters to vary, and chooses step

sizes that are a �xed fraction (e.g., 10%) of the initial parameter values. H will then pseudorandomly choose one or more

parameters to adjust. Every time a parameter xi is found to reduce E, the probability that H will select xi in the future

increases; conversely, if changes in xi are not found to improve E, the probability that H will select xi decreases (formally,

H forms “hunches” about which parameters are “good”). H also adaptively adjusts the step size based on the information

H obtains about the curvature of parameter space with respect to each dimension (e.g., if ∆E/∆xi ≈ const. over multiple

iterations, H will increase the step size). Despite its drawbacks, the adaptive nature of manual parameter �tting makes it a

remarkably powerful method.

Thus, despite the smörgåsbord of available automated optimization algorithms, manual �tting of parameters remains a

familiar bane of researchers (e.g., Castillo et al. (2005); Brom et al. (2012)), especially in cases where evaluations of the objective

function are computationally intensive, such as climate models (Wilby, 2005), neuronal network models (Prinz et al., 2003;

Baker et al., 2011; Kerr et al., 2013), or detailed epidemiological models (Kwon et al., 2012). However, it is di�cult to estimate

how commonly manual parameter �tting is performed, since authors often do not explicitly mention its use (e.g., Song et

al. (2013)).

In many types of optimization problems, it is more important to need only a small number of function evaluations to

�nd a reasonable local minimum than it is to �nd the global minimum (Goodner et al., 2012). Indeed, the latter may be

ill-de�ned given the large uncertainties that are often present when models of complex systems are �tted to empirical data,

as in the citations listed above.

With the increasing availability of high-performance computers and clusters (Hilbert and López, 2011), easily parallelizable

optimization methods such as evolutionary algorithms (where di�erent individuals can be run on di�erent cores) and Monte

Carlo methods (where di�erent initializations can be run on di�erent cores) have a notable advantage for certain types of

problems. The common theme in these algorithms is the ability to use a di�erent random seed for each parallel instance.

However, as the size of parameter space increases, the advantage of this approach is diluted: whereas a 3- or even 5-

dimensional parameter space may be reasonably densely sampled by a Monte Carlo initialization, a 20- or 100-dimensional

* Corresponding author:

Address: 450 Clarkson Ave., Brooklyn, NY 11203, USA

Phone: +1 (347) 721-7328

Email: cli�@thekerrlab.com

2

space cannot. This is because parameter space grows exponentially with an increasing number of dimensions, whereas

parallelization increases sampling rates linearly.

In high-dimensional parameter spaces, it is unlikely that all parameters contribute equally to the objective function.

Identifying those that contribute more, thereby allowing computational resources to be focused on them, has the potential

to signi�cantly reduce the total number of function evaluations required. Despite humans’ limited capacity to implement

Bayesian-optimal strategies (Charness et al., 2007; Steyvers et al., 2009), we speculate that this adaptive approach to both

parameter selection and step size is the key reason why manual parameter �tting can be highly e�ective.

In this paper, we present an algorithm, Bayesian Adaptive Locally Linear Stochastic Descent (BALLSD), that was inspired

by manual parameter �tting. This approach is most applicable to optimization problems with more than approximately 5

dimensions – i.e., large enough so that performing function evaluations across all dimensions is ine�cient.

2 Methods

Consider an objective function E = f(x), where E is the scalar error (or other quantity) to be minimized (or maximized)

and x = [x1, x2, ..., xn] is an n-element vector of parameters. There are 2n possible directions j to step in: an increase or

decrease in the value of each parameter. Associated with each parameter xi are (a) two initial step sizes: sj = s+i or s−i ,

which de�ne the step size in the directions of increasing or decreasing xi, respectively (i.e., s+i > 0 and s−i < 0); and (b)

two initial probabilities: pj = p+i or p−i , which de�ne the likelihood of selecting direction j (for a uniform prior, pj = 1/2n
– satisfying the requirement that

∑
p =

∑2n
j=1 pj = 1). Thus, the vectors s and p have length 2n.

At each step k, the algorithm maps a random variable α ∈ (0, 1) onto p, thereby choosing a direction j ∈ (1 . . . 2n) and

a corresponding parameter i = dj/2e ∈ (1 . . . n), where d·e denotes the ceiling operator. The algorithm then evaluates

E±
k = f(x + δ(i)), (1)

where δ(i) is an n-element vector such that δi = sj and 0 otherwise. Then:

1) If E±
k < Ek−1:

a) The new parameter value is adopted: xi → xi + sj ;

b) The error is updated: Ek → E±
k ;

c) sj is increased: sj → sj · sinc (sinc > 1);

d) pj is increased: pj → pj · pinc (pinc > 1), and p is renormalized such that

∑
p = 1.

2) Otherwise:

a) The parameter vector x and error E are not changed;

b) sj is decreased: sj → sj/sdec (sdec > 1);

c) pj is decreased: pj → pj/pdec (pdec > 1), and p is renormalized as above.

The algorithm thus has four meta-parameters: sinc, sdec, pinc, and pdec. In practice, a reasonable choice is sinc = sdec =
pinc = pdec = 2, although in our experience any value from approximately 1.2 to 3 appears to work reasonably well for

the test cases used here; in general, the smoother and more linear the objective function is, the larger the learning rates

should be. In addition to these meta-parameters, four initial value vectors need to be speci�ed: the initial parameter vector

x0, step sizes s (which in general can be initialized as a �xed fraction of the corresponding initial parameter value, unless

it is zero), and probabilities p (where typically pj = 1/2n su�ces for an n-parameter problem).

By modifying s and p after each iteration, the algorithm learns which directions are most e�ective to step in and by how

much, using a loosely Bayesian approach (in the sense that it estimates the posterior distributions of s and p by modifying

the priors according to accumulated evidence). This, combined with the stochastic choice of which parameters to modify

on each iteration, resembles the way in which humans (imperfectly) perform Bayesian decision-making in situations such

as N -armed bandit problems (Steyvers et al., 2009).

3 Results

3.1 Comparison to other optimization methods

Here we compare BALLSD to four standard optimization methods: the Nelder-Mead nonlinear simplex algorithm (Nelder

and Mead, 1965), Levenberg-Marquardt gradient descent (Marquardt, 1963), simulated annealing (Kirkpatrick et al., 1983), and

a genetic algorithm (Bethke, 1978). All methods were implemented in MATLAB 2012b (The Mathworks), via the Optimization

Toolbox functions “fminsearch”, “lsqnonlin”, “simulannealbnd”, and “ga”, respectively.

3

Rosenbrock's valley (2D)

Function evaluations

R
el

at
iv

e
er

ro
r

0 2000 4000 6000 8000 10000
10-8

10-6

10-4

10-2

100
Powell's quartic (4D)

Function evaluations

R
el

at
iv

e
er

ro
r

0 2000 4000 6000 8000 10000
10-8

10-6

10-4

10-2

100

Powell's quartic (12D)

Function evaluations

R
el

at
iv

e
er

ro
r

0 2000 4000 6000 8000 10000
10-8

10-6

10-4

10-2

100
Powell's quartic (20D)

Function evaluations
R

el
at

iv
e

er
ro

r
0 2000 4000 6000 8000 10000

10-8

10-6

10-4

10-2

100

Powell's quartic (100D)

Function evaluations

R
el

at
iv

e
er

ro
r

0 2000 4000 6000 8000 10000
10-8

10-6

10-4

10-2

100

BALLSD

Simplex

Levenberg-Marquardt

Simulated annealing

Genetic algorithm

Figure 1: Performance of BALLSD compared to four standard nonlinear optimization algorithms: Nelder-Mead nonlinear simplex,

Levenberg-Marquardt gradient descent, simulated annealing, and a genetic algorithm. While standard methods – especially the simplex

method – are most e�cient for low-dimensional problems (e.g., Rosenbrock’s valley), in many cases BALLSD is the most e�cient algorithm

for high-dimensional parameter spaces (e.g., the 100-dimensional version of Powell’s quartic function). For the stochastic methods (BALLSD,

simulated annealing, and the genetic algorithm), the shaded regions show the interquartile range for 40 di�erent random seeds.

For BALLSD, we used meta-parameters sinc = pinc = sdec = pdec = 2, initial step sizes sj of 20% of the parameter

values in x0 (which are given below; the step size for any parameter with an initial value of 0 is the mean of the other step

sizes), and initial probabilities pj of 1/2n for an n-dimensional problem. MATLAB’s default meta-parameters were used for

the other four algorithms, except that the initial temperature of the simulated annealing algorithm was set to be equal to

10 · 〈|x0|〉 following manual exploration of meta-parameter space, since the default choice of 100 did not generalize well

across problems of di�erent scales. Indeed, one of the major disadvantages of this type of algorithm is its sensitivity to the

values of its meta-parameters (Ben-Ameur, 2004).

To test this suite of algorithms, we used original and modi�ed versions of two classic optimization problems given in

Nelder and Mead (1965):

1) Rosenbrock’s parabolic valley (two-dimensional):

E = 100(x2 − x21)2 + (1− x1)2, (2)

with the starting point at x = (−1.2, 1). The optimum is at x = (1, 1).

4

Figure 2: Optimization of the 10-dimensional version of Rosenbrock’s valley starting from the point (1.5,−1.5). (A) Trajectories of each

optimization method up to 300 function evaluations; each iteration is shown with a square, but note that multiple function evaluations

may occur at each iteration. Note the locally linear steps of BALLSD that rapidly adapt in size. (B) Relative error of each method for

the �rst 100 function evaluations, showing the initial stage of the algorithms. (C) Relative error for the �rst 300 function evaluations,

showing the asymptotic stage of the algorithms.

2) A modi�ed 10-dimensional version of Rosenbrock’s valley, with the functional form as given in Eq. 2, but with a

10-element parameter vector x; the remaining 8 parameters do not contribute to the objective function. The starting

point is at x = (1.5,−1.5, 0, 0 . . . 0). The optimum is at x = (0, 0 . . . 0).

3) A modi�ed Powell’s quartic function (N -dimensional):

E =
∑(

(x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4
)
, (3)

where xq is a vector of length N/4. The starting point is at x10 = (3), x20 = (−1), x30 = (0), and x40 = (1),

where each component is repeated N/4 times (e.g., if N = 8, x0 = (3, 3,−1,−, 1, 0, 0, 1, 1)). The optimum is at

x = (x1,x2,x3,x4) = (0, 0, 0, . . . 0). Here, we used 4, 12, 20, and 100-dimensional versions of Powell’s function.

As shown in Fig. 1, for the two-dimensional optimization problem, the nonlinear simplex method is most e�cient,

with all other algorithms requiring considerably more function evaluations to obtain the same error. Notably, BALLSD was

5

0 500 1000 1500 2000
−2

−1

0

1

2

3

4
BALLSD

Function evaluations

P
ar

am
et

er
 v

al
ue

0 500 1000 1500 2000
−2

−1

0

1

2

3

4
Simplex

Function evaluations

P
ar

am
et

er
 v

al
ue

0 500 1000 1500 2000
−2

−1

0

1

2

3

4
Levenberg−Marquardt

Function evaluations

P
ar

am
et

er
 v

al
ue

0 500 1000 1500 2000
−2

−1

0

1

2

3

4
Simulated annealing

Function evaluations

P
ar

am
et

er
 v

al
ue

0 500 1000 1500 2000
−2

−1

0

1

2

3

4
Genetic algorithm

Function evaluations

P
ar

am
et

er
 v

al
ue

0 500 1000 1500 2000
10

−8

10
−6

10
−4

10
−2

10
0

Objective function

Function evaluations

R
el

at
iv

e
er

ro
r

BALLSD
Simplex
Levenberg−Marquardt
Simulated annealing
Genetic algorithm

Figure 3: Parameter update strategies for each algorithm applied to a 20-dimensional Powell’s quartic function. Each line is a separate

parameter; the optimum is at (0, 0, 0, . . . 0). The error relative to the starting point is shown in the bottom right panel. For small numbers

of iterations (the adaptive phase of BALLSD), the Levenberg-Marquardt method reduces error most quickly; for larger numbers of iterations,

BALLSD achieves 1–4 orders of magnitude smaller error for a given number of iterations than the other methods. (Note: since the genetic

algorithm does not use a single initial point, individuals were instead initialized using a uniform random distribution in the range [−1, 3].
The Levenberg-Marquardt algorithm operates on the 20-dimension Powell’s function identically to the 4-dimensional version, with the

exception that each iteration requires 5 times as many function evaluations.)

especially ine�cient, since its assumption of local linearity is violated by the shallow, curved valley. However, with the

modi�ed version of the problem described above, BALLSD is the most e�cient algorithm over most of the �rst several

hundred function evaluations, as shown in Fig. 2 for a single random seed. For small numbers of iterations (<30), for this

particular seed, simulated annealing was by far the most e�cient algorithm, reducing the error by a remarkable 98% after

just 4 function evaluations. However, this algorithm became mired near the point (1.5, 2.4), far from the true minimum

of (1, 1), and did not signi�cantly reduce the error beyond the �rst 20 function evaluations. After 50 function evaluations,

BALLSD had reduced the error by 99.9%, compared to 99.7% for simulated annealing, 96% for the Levenberg-Marquardt

6

method, 82% for the nonlinear simplex method, and 0% for the genetic algorithm. Similarly, BALLSD reduced the error by

99.99% after 70 function evaluations; in comparison, the next best algorithm (the simplex method) required 220 function

evaluations to reach the same error level. During the descent into the shallow curved valley (comprising ∼99.9% of the total

error), the most e�cient algorithms were BALLSD and simulated annealing; within the valley (the remaining ∼0.1% of the

total error), the simplex algorithm was by far the most e�cient. Hence, this example illustrates that in optimization problems

where some parameters are signi�cantly more important than others, BALLSD has signi�cant advantages. In contrast, for

problems in which all parameters have equal importance, as in the original Rosenbrock’s valley problem, other algorithms

have superior performance.

For the 4-dimensional Powell’s quartic function, the nonlinear simplex method was again the most e�cient, followed by

BALLSD. For the 12- and 20-dimensional version, BALLSD was most e�cient for 60–1700 and 250–4400 function evaluations

respectively (corresponding to roughly 99.9999% of the total error at the upper limit in each case), after which the simplex

method was most e�cient. For the 100-dimensional version, the Levenberg-Marquardt method was most e�cient for the

�rst 1000 function evaluations (corresponding to 97% of the total error), but BALLSD was the most e�cient algorithm for

larger numbers of function evaluations.

The �ve optimization methods discussed here employ very di�erent parameter update strategies, as shown strikingly

in Fig. 3. The approach used in BALLSD is most similar to the Levenberg-Marquardt method, with the exception that the

rate of convergence of the former increases over time (due to its adaptive step size), whereas for the latter it decreases.

In the example shown here (a 20-dimensional Powell’s quartic function), the Levenberg-Marquardt method has the lowest

error for 250 or fewer iterations; for large numbers of iterations, BALLSD has by far the lowest error – indeed, for 2000

or more iterations, it has nearly 2 orders of magnitude less error than the Levenberg-Marquardt method, and 4 orders of

magnitude less error than nonlinear simplex, simulated annealing, and genetic algorithms. The superior performance of

BALLSD compared to the other methods is surprising since, unlike in Fig. 2, in this problem all parameters are of roughly

equal importance, so the adaptive probability p is unlikely to signi�cantly contribute to the e�ciency of the optimization.

Thus, even in cases where BALLSD’s only advantage is its adaptive step size, it is still capable of outperforming traditional

algorithms.

3.2 Optimizing HIV resource allocations

In contrast to the foregoing theoretical discussion of error minimization for analytical functions, here we describe the

practical application that BALLSD was designed for, a topic that has recently garnered considerable interest: �nding the

allocation of resources across di�erent HIV prevention programs that minimizes new infections (Anderson et al., 2014). Full

details of the HIV model are presented in Supplementary Methods S1. In brief, the model describes HIV transmission and

progression in a number of interacting subpopulations (14 in this case), including female sex workers, men who have sex

with men, and general males and females in di�erent age groups. The model incorporates roughly 200 parameters, which

describe the sexual behavior, injecting behavior, HIV testing and treatment rates, and sexual and injecting partnerships of

each population, as well as basic clinical parameters such as HIV transmissibility and disease progression rates. In addition

to empirical estimates of these parameters, the model is calibrated to match surveillance data on HIV prevalence, diagnoses,

and numbers of people on treatment. In this example, the model was based on and calibrated to behavioral and surveillance

data from Swaziland. Since the model is relatively computationally intensive, requiring 1–2 s per function evaluation on a

standard laptop, large numbers (>102) of evaluations are wearisome.

To optimize the allocation of Swaziland’s HIV budget, we assumed that spending on particular HIV programs produces

changes in corresponding behavioral parameters or testing and treatment rates (for example, programs targeting female sex

workers increase their probability of condom use). In this case, the objective we chose to minimize was the number of new

infections over the period 2015–2020, subject to the constraint that total funding was held constant at current (2014) levels.

Allocations across 9 di�erent HIV prevention, testing, and treatment programs were considered.

As shown in Fig. 4A, under current conditions, the model predicts a median of approximately 2500 new infections per

year in Swaziland. However, if funding is optimally allocated, as shown in Fig. 4B (which consists largely of shifting funds

from programs for orphans and vulnerable children towards treatment and male circumcision programs), this can be reduced

to approximately 1260 new infections per year. BALLSD found this allocation after 65 function evaluations. The next-best

algorithm, the Levenberg-Marquardt method, found a nearly identical allocation after 830 function evaluations. None of the

other methods reached this level of optimization within 2000 function evaluations; by that point, the genetic algorithm had

achieved 99.3% of the reduction in new infections found by BALLSD and the Levenberg-Marquardt method, the nonlinear

simplex algorithm 95%, and the simulated annealing algorithm 90%.

7

A

B

Function evaluations

N
ew

 in
fe

ct
io

ns
 p

er
 y

ea
r

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1000

1500

2000

2500
BALLSD
Simplex
Levenberg-Marquardt
Simulated annealing
Genetic algorithm

Current allocation

MSM

Circumcision

FSW

Condom

Behavior change

Testing

PMTCT

OVC

ART

Optimal allocation

Figure 4: Comparison of optimization methods for a real-world example of HIV resource allocation. (A) The minimum number of new

infections calculated by each method for the �rst 2000 function evaluations. As above, the shaded regions show the interquartile ranges

over 40 di�erent random seeds. (B) Resource allocations in Swaziland for each HIV program, showing the current budget allocation (left)

and the allocation that minimizes new infections (right). MSM = men who have sex with men; FSW = female sex workers; PMTCT =

prevention of mother-to-child transmission; OVC = orphans and vulnerable children; ART = antiretroviral therapy.

4 Discussion

4.1 Extensions of the algorithm

This section describes several modi�cations to the basic algorithm that may make it more suitable for a broader range

of optimization problems.

First, the assumptions of uniform priors p and uniform initial step sizes s can easily be relaxed, allowing assumptions

about the scale or relative importance of parameters to be incorporated. However, due to the adaptive nature of the algorithm,

even silly initial choices of p and s will be corrected, as long as all pj and sj are nonzero.

8

Second, rather than updating the probability pj by a �xed amount after each successful iteration, the change in pj (∆pj)

could be proportional to the change in the error function E (∆E), with a larger ∆E resulting in larger ∆pj . Since the

expected change in E at step k is proportional to both Ek−min(E) and the ratio of the step size to the characteristic scale

of each parameter, and since in general neither of these quantities are known, the constant of proportionality between ∆pj
and ∆E cannot typically be estimated a priori. One can partially circumvent this problem by comparing the current ∆E
to its previous values; however, more weight would need to be given to more recent values, since ∆E tends to decrease as

the algorithm converges on a solution.

Third, it is possible to relax the assumption of local linearity by varying multiple parameters on a single iteration.

However, assuming a separate probability is stored for each parameter combination, this reduces the learning rate; for an

n-parameter problem, modifying a single parameter at each iteration results in a learning rate of 1/2n on average for each

parameter; in the limit where all possible combinations of parameters are considered, the learning rate would be 1/22n.

While manageable for small numbers of parameters (e.g., ≤4), this quickly becomes intractable as the number of parameters

grows. Conversely, if multiple parameters are modi�ed simultaneously, the probabilities of all modi�ed parameters could be

updated simultaneously; this approach is likely to be most e�ective in very high-dimensional systems where the function E
is nearly �at with respect to many of the dimensions, in which case varying parameters one by one may be time-consuming.

The superior performance of simulated annealing compared to BALLSD for small numbers of function evaluations in the

10-parameter Rosenbrock’s valley problem shown in Fig. 2 is likely due to this e�ect.

Fourth, to circumvent the problem of local minima, the method may be used with either Monte Carlo initialization

(Metropolis and Ulam, 1949) or a Metropolis-Hastings approach (Metropolis et al., 1953). In the former, the BALLSD algorithm

would be repeated multiple times (typically, 102 − 103) with pseudorandom choices of x0. In the latter, instead of always

performing step 2 of the algorithm if the new iteration does not reduce error, step 1 would be performed with nonzero

acceptance ratio ρ, where ρ is a function of the change in error; e.g., ρ ∝ E±
k /Ek−1. Although the parameter set resulting

from each iteration can be kept, as in a standard Metropolis-Hastings algorithm, the value of doing so is limited since the

asymptotic distribution of parameter sets is not guaranteed to reach a stationary distribution, due to the adaptive method

for choosing which parameters to vary. Instead, it would su�ce to keep two parameter sets, the current one and the best

one. As a simpler alternative to implementing a Metropolis-Hastings approach, rather than always reducing the step size if

the new iteration does not reduce the error, step size could have a nonzero probability of increasing, potentially allowing

the algorithm to escape local minima.

Finally, the BALLSD algorithm is only loosely Bayesian. While a more formal Bayesian approach may be desirable in

certain situations, in general it is di�cult to determine whether new information should be used to update the existing

distribution, or whether the system is in a su�ciently dissimilar part of the parameter space that information from much

earlier iterations is no longer relevant. Nonetheless, for certain problems, additional capacity for adaptation may be bene�cial.

For example, the basic implementation of BALLSD described above performs poorly in the classic version of Rosenbrock’s

valley (Fig. 1); for this particular problem, an algorithm that was capable of learning nonlinear parameter combinations

would be far more e�cient.

4.2 Conclusions

This paper has presented a simple optimization method inspired by the process of manual parameter �tting that is capable

of outperforming traditional algorithms for certain classes of problems. The algorithm is most e�ective for problems with

moderate to large dimensionality (>5 dimensions), which corresponds to the case in which there are enough parameters

that di�erent parameters are likely to have very di�erent overall contributions to the objective function. Indeed, the relative

uniformity of parameters in the test functions used here (in terms of both scale and e�ectiveness) does not necessarily

re�ect certain real-world situations in which some – or even most – of the objective function’s parameters may have little

in�uence on its value. In such situations, BALLSD is especially e�ective, as it is able to adapt to those parameters (and those

scales) that produce the greatest improvements in the objective function. An example of this is provided in Fig. 4, where

BALLSD �nds what appears to be the globally optimal solution more than 10 times faster than any other algorithm.

This study has two main limitations. First, MATLAB’s default values of the meta-parameters were used for the other

algorithms (except the initial temperature of the simulated annealing, as noted above). Meta-parameter tuning would likely

increase the performance of these algorithms more than it would for BALLSD, since these algorithms are not adaptive – but

conversely, an advantage of BALLSD is that it typically does not require any meta-parameter tuning, so in that sense the

comparison is fair. Second, we chose the four algorithms to compare against BALLSD based on their popularity, as evidenced

by their inclusion in MATLAB’s Optimization Toolbox. However, many other optimization algorithms exist, some of which

have also been shown to signi�cantly outperform these more traditional methods (e.g., Rios and Sahinidis (2013)).

9

As noted above, BALLSD has already been used successfully in the real-world application of optimizing the allocation

of HIV budgets. For this problem, standard optimization methods, including the four compared against BALLSD in this

paper, were found to require an excessively large number of function evaluations to obtain acceptable solutions. This led the

authors to resort to manual parameter �tting until BALLSD was developed. It is our hope that this algorithm may be able

to free other researchers from similar unpleasantries. Finally, we note that Python and Matlab implementations of BALLSD,

as well as the suite of tests used in this paper, are available for download at http://thekerrlab.com/ballsd.

Acknowledgements

C.C.K. was supported by the Australian Research Council (ARC) Discovery Early Career Researcher Award DE140101375.

C.C.K. and S.D.B. were supported by the Defense Advanced Research Projects Agency (DARPA) Contract N66001-10-C-2008.

C.C.K. and D.P.W. were supported by World Bank Assignment 1045478. T.G.S. was supported by National Institutes of Health

grants NCRR 5P20RR016472-12 and NIGMS 8P20GM103446-12, and the National Science Foundation grants EPSCoR-0814251

and HRD-1242067. The authors wish to thank W. W. Lytton, D. Pokrajac, J. Francis, R. M. Stuart, and Z. McGrath for their

helpful comments.

Author contributions

C.C.K. came up with the original algorithm and wrote the manuscript; T.G.S. revised and corrected the manuscript and

provided re�nements to the method; S.D.B. checked to see if C.C.K.’s code actually worked, and, since it did not, �xed it

and added further functionality; D.P.W. led the conceptual development of the HIV resource allocation model that spurred

development of this algorithm and was used here to demonstrate its use. All authors read and approved the manuscript.

References

Anderson SJ, Cherutich P, Kilonzo N, Cremin I, Fecht D, Kimanga D, Harper M, Masha RL, Ngongo PB, Maina W et al.

(2014) Maximising the e�ect of combination HIV prevention through prioritisation of the people and places in greatest

need: a modelling study. The Lancet 384:249–256.

Baker JL, Perez-Rosello T, Migliore M, Barrionuevo G, Ascoli GA (2011) A computer model of unitary responses from

associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. Journal of Computational
Neuroscience 31:137–158.

Ben-Ameur W (2004) Computing the initial temperature of simulated annealing. Computational Optimization and
Applications 29:369–385.

Bethke AD (1978) Genetic algorithms as function optimizers. University of Michigan.

Brom C, Vyhnánek J, Lukavský J, Waller D, Kadlec R (2012) A computational model of the allocentric and egocentric

spatial memory by means of virtual agents, or how simple virtual agents can help to build complex computational models.

Cognitive Systems Research 17–18:1–24.

Castillo P, Lozano R, Dzul A (2005) Stabilization of a mini rotorcraft with four rotors. IEEE Control Systems Magazine 25:45–55.

Charness G, Karni E, Levin D (2007) Individual and group decision making under risk: An experimental study of Bayesian

updating and violations of �rst-order stochastic dominance. Journal of Risk and Uncertainty 35:129–148.

Goodner J, Tsianos GA, Li Y, Loeb GE (2012) BioSearch: A physiologically plausible learning model for the sensorimotor

system. In Proceedings of the Society for Neuroscience Annual Meeting 275.22/LL11.

Hilbert M, López P (2011) The world’s technological capacity to store, communicate, and compute information. Sci-
ence 332:60–65.

Kerr CC, Van Albada SJ, Neymotin SA, Chadderdon GL, Robinson P, Lytton WW (2013) Cortical information �ow in

Parkinson’s disease: a composite network/�eld model. Frontiers in Computational Neuroscience 7:1–14.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simmulated annealing. Science 220:671–680.

Kwon JA, Anderson J, Kerr CC, Thein HH, Zhang L, Iversen J, Dore GJ, Kaldor JM, Law MG, Maher L, Wilson DP (2012)

Estimating the cost-e�ectiveness of needle-syringe programs in Australia. AIDS 26:2201–2210.

Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial
& Applied Mathematics 11:431–441.

http://thekerrlab.com/ballsd

10

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing

machines. Journal of Chemical Physics 21:1087–1092.

Metropolis N, Ulam S (1949) The Monte Carlo method. Journal of the American Statistical Association 44:335–341.

Nelder JA, Mead R (1965) A simplex method for function minimization. Computer Journal 7:308–313.

Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis

of databases of model neurons. Journal of Neurophysiology 90:3998–4015.

Rios LM, Sahinidis NV (2013) Derivative-free optimization: A review of algorithms and comparison of software implemen-

tations. Journal of Global Optimization 56:1247–1293.

Song W, Kerr CC, Lytton WW, Francis JT (2013) Cortical plasticity induced by spike-triggered microstimulation in primate

somatosensory cortex. PLOS ONE 8:e57453.

Steyvers M, Lee MD, Wagenmakers EJ (2009) A Bayesian analysis of human decision-making on bandit problems. Journal
of Mathematical Psychology 53:168–179.

Wilby RL (2005) Uncertainty in water resource model parameters used for climate change impact assessment. Hydrological
Processes 19:3201–3219.

	Introduction
	Methods
	Results
	Comparison to other optimization methods
	Optimizing HIV resource allocations

	Discussion
	Extensions of the algorithm
	Conclusions

